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Abstract—Multi-agent coordination is critical for next-
generation autonomous vehicle (AV) systems, yet naive im-
plementations of communication-based rerouting can lead to
catastrophic performance degradation. This study investigates
a fundamental problem in decentralized multi-agent navigation:
routing loops, where vehicles without persistent obstacle mem-
ory become trapped in cycles of inefficient path recalculation.
Through systematic simulation experiments involving 72 unique
configurations across varying vehicle densities (15, 35, 55 vehicles)
and obstacle frequencies (6, 20 obstacles), we demonstrate that
memory-less reactive rerouting increases average travel time
by up to 682% compared to baseline conditions. To address
this, we introduce Object Memory Management (OMM), a
lightweight mechanism enabling agents to retain and share
knowledge of previously encountered obstacles. OMM operates
by maintaining a distributed blacklist of blocked nodes, which
each agent consults during Dijkstra-based path recalculation,
effectively preventing redundant routing attempts. Our results
show that OMM-enabled coordination reduces average travel
time by 75.7% and wait time by 88% compared to memory-
less systems, while requiring only 1.67 route recalculations per
vehicle versus 9.83 in memory-less scenarios. This work provides
empirical evidence that persistent, shared memory is not merely
beneficial but essential for robust multi-agent coordination in dy-
namic environments. The findings have implications beyond au-
tonomous vehicles, informing the design of decentralized systems
in robotics, network routing, and distributed AI. We provide a
comprehensive experimental analysis, including detailed scenario
breakdowns, scalability assessments, and visual documentation of
the routing loop phenomenon, demonstrating OMM’s critical role
in preventing detrimental feedback cycles in cooperative multi-
agent systems.

Index Terms—Autonomous Vehicles, Multi-Agent Systems,
V2V Communication, Dynamic Rerouting, Traffic Simulation,
Obstacle Avoidance, Object Memory Management, Routing
Loops, Decentralized Coordination, Graph-Based Planning

I. INTRODUCTION

A. Motivation: From Individual Autonomy to Collective Intel-
ligence

Autonomous vehicles (AVs) represent one of the most
complex applications of artificial intelligence, requiring real-
time integration of perception, planning, and control. Current

state-of-the-art systems operate under a paradigm of individual
autonomy, where each vehicle makes decisions based solely
on onboard sensors and pre-computed routes. However, this
isolated decision-making breaks down in real-world scenarios
involving dynamic obstacles, unpredictable traffic conditions,
and system-wide congestion. As AV technology advances
toward higher levels of automation (SAE Levels 4-5), the
ability for vehicles to function as coordinated multi-agent
systems—sharing information and making collective deci-
sions—becomes not just beneficial but necessary for safe,
efficient operation.

The promise of vehicle-to-vehicle (V2V) communication is
clear: by exchanging data about road conditions, obstacles,
and intentions, a fleet of AVs can achieve superior system-
level performance compared to isolated agents. Early research
demonstrated that even a single intelligent AV can dissipate
traffic waves in human-driven traffic [1], suggesting that
coordinated fleets could revolutionize traffic management. Yet
a critical question remains largely unexplored: How do we
design decentralized coordination strategies that are robust,
scalable, and avoid unintended consequences?

B. The Routing Loop Problem: A Fundamental Challenge

This paper addresses a counterintuitive phenomenon we
term the routing loop problem: under certain conditions,
enabling vehicles to communicate and dynamically reroute in
response to obstacles can dramatically worsen performance
compared to non-communicating vehicles. Specifically, we
discovered that reactive rerouting without persistent memory
causes vehicles to become trapped in cycles where they:

1) Encounter an obstacle and reroute around it
2) Navigate to a new path, encounter a second obstacle
3) Reroute again, inadvertently choosing a path back to-

ward the original obstacle
4) Return to the first obstacle, having ”forgotten” its exis-

tence
5) Repeat indefinitely, creating a feedback loop of wasted

travel and computation



This phenomenon—visualized comprehensively in our ex-
periments—represents a fundamental failure mode in decen-
tralized multi-agent systems. It arises from the tension between
local optimization (each vehicle choosing its instantaneous
shortest path) and global awareness (the need to avoid col-
lectively repeating failed decisions).

C. Our Contribution: Object Memory Management (OMM)

To solve this problem, we introduce Object Memory
Management (OMM), a lightweight mechanism that enables
agents to retain and share persistent knowledge of encountered
obstacles. OMM transforms vehicles from purely reactive
agents into proactive, learning agents that consult both current
sensor data and historical knowledge when making routing de-
cisions. The key insight is simple yet powerful: by maintaining
a distributed ”blacklist” of problematic nodes, agents prevent
themselves from repeatedly attempting known-blocked routes.

Our comprehensive experimental evaluation—spanning 72
unique configurations with systematic variation of ve-
hicle density, obstacle frequency, and movement pat-
terns—demonstrates that:

• Memory-less reactive rerouting is catastrophically
inefficient, increasing average travel time by 542% and
wait time by 391% compared to non-rerouting baselines.

• OMM-enabled coordination achieves near-optimal
performance, reducing travel time to within 68% of
obstacle-free baseline, compared to 442% for memory-
less systems.

• The benefit scales robustly across vehicle densities and
obstacle configurations, with consistent 70-90% reduc-
tions in delay.

• Computational overhead is minimal, requiring only
1.67 route recalculations per vehicle versus 9.83 for
memory-less approaches.

D. Paper Organization and Contributions

The remainder of this paper is organized as follows. Section
II reviews related work in multi-agent systems, V2V com-
munication, and dynamic routing. Section III presents our
experimental methodology, including the graph-based simula-
tion environment, systematic experimental design, and detailed
algorithmic specifications for OMM. Section IV provides com-
prehensive results, including quantitative performance metrics,
scalability analysis, and visual documentation of the routing
loop phenomenon. Section V discusses theoretical implica-
tions, practical considerations, and connections to broader
multi-agent coordination problems. Section VI outlines future
research directions, and Section VII concludes.

Key contributions of this work include:
1) Discovery and characterization of the routing loop

problem as a fundamental failure mode in decentralized
multi-agent rerouting

2) Design and validation of Object Memory Management
(OMM) as an elegant, lightweight solution requiring
minimal computational and communication overhead

3) Rigorous experimental evidence from 72 systemati-
cally designed scenarios demonstrating OMM’s effec-
tiveness across diverse conditions

4) Theoretical insights into the critical role of persis-
tent, shared memory in decentralized coordination, with
implications extending beyond autonomous vehicles to
general multi-agent AI systems

II. BACKGROUND AND RELATED WORK

A. Multi-Agent Systems in Autonomous Driving

Multi-agent systems (MAS) provide a framework for ana-
lyzing and designing systems where multiple intelligent agents
interact within a shared environment. In autonomous driving,
each vehicle acts as an autonomous agent with its own sensors,
decision-making capabilities, and objectives. The transition
from individual autonomy to multi-agent coordination enables
cooperative driving behaviors that optimize traffic flow, reduce
congestion, and improve safety [2].

Research has shown that even small percentages of coop-
erative AVs can significantly impact traffic dynamics. Stern
et al. demonstrated experimentally that a single AV with
an intelligent speed control policy could dissipate stop-and-
go waves in a platoon of human-driven vehicles [1]. Cui
et al. extended this to show that decentralized multi-agent
policies can improve congestion metrics in complex road
networks without centralized coordination [3]. These findings
underscore that the key challenge in fully autonomous traffic
shifts from handling unpredictable human behavior to enabling
effective inter-agent communication and coordination [4].

However, multi-agent coordination introduces its own chal-
lenges. The joint state-action space grows exponentially with
agent count, making learning and planning computationally
expensive. Moreover, each agent’s environment becomes non-
stationary from its perspective, as the observations and rewards
depend on other agents’ actions. This necessitates careful
algorithm design to ensure stable, scalable coordination.

B. V2V and V2I Communication Technologies

Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication, collectively known as V2X, form
the technological foundation for cooperative driving. These
systems enable real-time information exchange about vehicle
states, road conditions, and traffic events.

Two primary V2V technologies are in development. Dedi-
cated Short Range Communications (DSRC), based on IEEE
802.11p, operates in the 5.9 GHz band and provides low-
latency (tens of milliseconds) communication suitable for
safety-critical applications [6]. Cellular-V2X (C-V2X) lever-
ages 4G/LTE and 5G networks, offering extended range but
facing challenges in meeting latency requirements for emer-
gency maneuvers [7]. Both technologies enable cooperative
perception, where an obstacle detected by one vehicle is
virtually sensed by all nearby agents, extending effective
sensing range beyond line-of-sight limitations.

Critical to V2X effectiveness are message standards defining
what information is exchanged. The SAE J2735 standard



Fig. 1: V2X communication architecture showing interactions
among vehicles, infrastructure, pedestrians, and networks.
Blue arrows represent short-range direct links (V2V, V2I,
V2P), while orange arrows represent long-range network-
assisted communications (V2N, I2N). Effective multi-agent
coordination leverages this multi-modal communication infras-
tructure (adapted from [5]).

specifies Basic Safety Messages (BSM) containing position,
velocity, and heading data broadcast at 10 Hz, as well as
event-driven messages like Road Hazard Notifications for
obstacles or incidents. Security is paramount, as spoofed or
malicious messages could cause incorrect decisions; thus,
V2X protocols incorporate digital signatures, encryption, and
plausibility checks [8].

C. Distributed Coordination Strategies

Multi-agent coordination can be centralized (a single con-
troller computes global solutions) or decentralized (each agent
makes independent decisions based on local information).
Centralized approaches, while theoretically optimal, suffer
from scalability issues, single points of failure, and communi-
cation bottlenecks, making them impractical for large AV fleets
[4]. Decentralized coordination is more realistic and robust,
but requires careful design to ensure that independent local
decisions produce desirable global behavior [9].

Recent work demonstrates the effectiveness of decentralized
approaches. Zhang et al. showed that decentralized reinforce-
ment learning policies can eliminate traffic bottlenecks with
each vehicle making decisions based solely on local observa-
tions and limited V2V communication [9]. Vitale and Roncoli
developed a fully distributed cooperative rerouting algorithm
where vehicles iteratively share route intentions and adjust
based on collective congestion costs, converging to a traffic-
dispersing equilibrium without central oversight [10].

A key paradigm in multi-agent reinforcement learning
(MARL) is Centralized Training with Decentralized Execution
(CTDE) [4]. During offline training (in simulation), agents
have access to global state information to learn cooperative
policies. At deployment, each agent’s policy executes using
only local observations and V2V messages, maintaining de-
centralized operation. This approach has proven effective for
learning lane-changing, merging, and intersection negotiation
behaviors [11], [12].

D. The Critical Role of Memory in Multi-Agent Systems

An often-underappreciated aspect of multi-agent coordina-
tion is the role of memory. In a decentralized system without
centralized state storage, each agent must serve as both a
sensor and a data repository. The ability to retain knowledge
of past states, events, and decisions is crucial for avoiding
repetitive mistakes in non-stationary environments.

Dinneweth et al. highlight that incorporating memory (e.g.,
via recurrent neural networks in MARL) significantly im-
proves agent coordination by enabling better inference of
environment dynamics and other agents’ behaviors [4]. In
navigation specifically, memory allows agents to recall that
certain routes were previously impassable, preventing redun-
dant exploration. Without memory, an agent encountering
obstacle A, rerouting to path B, and then encountering obstacle
B, has no mechanism to avoid routing back to A—precisely
the routing loop problem we identify and solve in this work.

E. Dynamic Routing and Rerouting

Route planning for AVs typically employs graph-based
algorithms like Dijkstra’s or A* to compute shortest paths
on road networks [13], [14]. In static environments, these
algorithms are optimal. However, real-world traffic is dynamic:
accidents, construction, and congestion render planned routes
suboptimal or impassable.

Dynamic rerouting strategies enable vehicles to adapt to
changing conditions. Chen et al. demonstrated that adaptive
vehicle rerouting mitigates congestion by redistributing traffic
when routes become saturated [15]. Djavadian et al. explored
multi-objective eco-routing that balances travel time with fuel
consumption in response to real-time traffic data [16].

In multi-agent contexts, coordinated rerouting is essential.
If all vehicles independently reroute to the same alternate
path upon encountering an obstacle, the detour becomes a
new bottleneck. Vitale and Roncoli’s work addresses this
by incorporating collective congestion costs into individual
route choices, encouraging load balancing [10]. Our work
complements this by addressing a more fundamental issue:
ensuring that rerouting decisions do not create pathological
feedback loops due to lack of memory.

F. Simulation Platforms for Multi-Agent AV Research

Autonomous driving research relies heavily on simulation
due to the impracticality and safety concerns of large-scale
real-world testing. High-fidelity 3D simulators like CARLA
[17] and LGSVL offer photorealistic environments, detailed
physics, and sensor models, making them ideal for perception
and low-level control research. However, they require signif-
icant computational resources (high-end GPUs with 6-8 GB
VRAM) and are not well-suited for large-scale multi-agent
experiments focusing on high-level decision-making.

Microscopic traffic simulators like SUMO [18] can ef-
ficiently simulate thousands of vehicles on road networks,
with built-in support for traffic lights, lane-changing, and
dynamic routing. While SUMO is powerful, implementing
custom multi-agent communication protocols and fine-grained



memory mechanisms requires complex scripting via its TraCI
interface.

For this study, we developed a custom graph-based simula-
tor prioritizing:

1) Abstraction: Focus on routing decisions and obstacle
avoidance without low-level vehicle dynamics

2) Control: Direct implementation of OMM and commu-
nication protocols

3) Reproducibility: Deterministic experiments with pre-
cisely controlled variables

4) Efficiency: Ability to run hundreds of trials rapidly for
statistical rigor

This approach aligns with the principle of using models
that are ”as simple as possible, but no simpler,” allowing us
to isolate cause-and-effect relationships between coordination
mechanisms and performance outcomes.

G. Research Gap and Our Contribution

While extensive work exists on V2V communication pro-
tocols, MARL for traffic coordination, and dynamic routing
algorithms, a critical gap remains: understanding and pre-
venting pathological failure modes in decentralized rerouting
systems. Prior work generally assumes that more information
and more adaptive decision-making improve performance. Our
research challenges this assumption, demonstrating that naive
implementations can produce catastrophically worse outcomes
than simpler, non-adaptive approaches.

To our knowledge, this is the first work to:
• Identify and characterize the routing loop problem as

a fundamental failure mode in memory-less multi-agent
rerouting

• Propose and validate a lightweight solution (OMM)
specifically designed to prevent this failure

• Provide comprehensive empirical evidence across diverse
scenarios showing that persistent shared memory is not
just beneficial but essential for robust coordination

This contribution has implications extending beyond AVs
to any decentralized multi-agent system operating in dynamic
environments, including multi-robot coordination, distributed
network routing, and swarm intelligence.

III. METHODOLOGY

This section describes our experimental approach, including
the simulation environment, systematic experimental design,
and detailed algorithmic specifications.

A. Research Questions and Hypotheses

Our investigation is guided by the following research ques-
tions:

RQ1: How does inter-agent communication affect routing
efficiency in obstacle-rich environments?

RQ2: Under what conditions does dynamic rerouting im-
prove or degrade performance?

RQ3: What is the impact of persistent obstacle memory on
multi-agent coordination effectiveness?

Fig. 2: The graph-based road network used in all experiments,
consisting of 86 nodes (intersections) and 161 directed edges
(road segments). Blue nodes represent normal intersections,
red nodes indicate obstacle locations in certain scenarios,
and colored paths show example vehicle trajectories. This
abstracted representation allows focused analysis of routing
decisions without the confounding effects of detailed vehicle
dynamics.

RQ4: How do these effects scale with vehicle density and
obstacle frequency?

Based on prior work, we hypothesized that communication
and rerouting would improve performance. However, our ini-
tial experiments revealed the routing loop problem, leading to
a refined hypothesis: Reactive rerouting without memory will
degrade performance due to feedback loops, while memory-
enabled rerouting will achieve near-optimal coordination.

B. Graph-Based Simulation Environment

We model the road network as a directed graph G = (V,E),
where nodes v ∈ V represent intersections or decision points,
and edges e ∈ E represent road segments. For this study,
we use a graph with |V | = 86 nodes and |E| = 161
edges, providing sufficient complexity to observe multi-agent
interactions while remaining computationally tractable.

Each edge (u, v) ∈ E has an associated weight w(u, v)
representing travel time. In our deterministic simulation, travel
time along an edge is constant, allowing for reproducible ex-
periments. Obstacles are represented by temporarily removing
nodes from the graph: when node v becomes an obstacle at
time t, it is marked as unavailable, and all edges incident to
v are effectively removed from G for routing purposes.

Vehicles are modeled as autonomous agents, each defined
by:

• si: Start node
• di: Destination node
• pi(t): Current position at time t
• ri(t): Planned route (sequence of nodes) at time t
• Oi(t): Set of known obstacles at time t (for OMM-

enabled agents)
• τi: Total travel time
• wi: Total wait time at obstacles



C. Systematic Experimental Design

To comprehensively evaluate multi-agent coordination
strategies, we designed a factorial experiment with the fol-
lowing factors:

• Vehicle Density: 15, 35, 55 vehicles (low, medium, high
traffic)

• Obstacle Frequency: 6, 20 obstacles (sparse, dense
obstructions)

• Movement Pattern: Structured left-to-right traversal vs.
random origin-destination pairs

• Coordination Configuration: 6 distinct agent capability
settings (detailed below)

This yields 3 × 2 × 2 × 6 = 72 unique experimental
conditions. Each condition was run for at least 3 trials to
ensure reproducibility. Obstacles were placed at predetermined
locations and persisted for 10 seconds before clearing, unless
otherwise specified.

1) Six Coordination Configurations: The core of our ex-
perimental design is a systematic progression through increas-
ingly sophisticated agent capabilities:

TABLE I: Experimental Coordination Configurations: System-
atic Progression of Agent Capabilities

Config Description Comm. Reroute OMM

1 No Obstacles - - -(Baseline / Upper Bound)

2 Obstacles, No Reroute
✗ ✗ ✗(Worst Case / Lower Bound)

3 Communication Only
✓ ✗ ✗(Informed Waiting)

4 Reroute w/o OMM
✓

8s
✗(Failure Case) trigger

5 OMM Only
✓ ✗ ✓(Proactive Avoidance)

6 Reroute + OMM
✓

8s
✓(Full Coordination) trigger

Configuration Details:
Config 1 - No Obstacles (Baseline): Establishes optimal

travel time for each vehicle density and movement pattern
in the absence of disruptions. This serves as the theoretical
performance upper bound.

Config 2 - Obstacles, No Reroute (Worst Case): Vehicles
encountering obstacles wait for a fixed duration (10 seconds)
for clearance. No information is shared, no rerouting occurs.
This simulates a completely uncoordinated system and serves
as the performance lower bound.

Config 3 - Communication Only: Vehicles broadcast
obstacle locations upon detection, but do not reroute. Ap-
proaching vehicles are informed but still wait 10 seconds if
their path is blocked. This tests whether information alone,
without adaptive action, provides benefit.

Config 4 - Reroute without OMM (Critical Failure
Case): Vehicles encountering obstacles wait 8 seconds before
autonomously recalculating routes. Communication is enabled
for immediate obstacle awareness. Crucially, OMM is dis-
abled—vehicles do not retain memory of past obstacles. This

Algorithm 1 Modified Dijkstra’s Algorithm with Obstacle
Exclusion

1: Input: Graph G = (V,E), source s, destination d,
obstacle set O

2: Output: Shortest path P from s to d avoiding nodes in
O

3:
4: Create graph copy G′ ← G
5: Filter obstacles: O′ ← O \ {s, d} {Never exclude

source/dest}
6: for each node v ∈ O′ do
7: if v ∈ G′ then
8: Remove node v from G′ {Removes all incident

edges}
9: end if

10: end for
11:
12: P ← ComputeShortestPath(G′, s, d) {Standard Dijkstra}
13: if P exists then
14: return P
15: else
16: return NULL {No feasible path exists}
17: end if

configuration, hypothesized to improve performance, instead
produces catastrophic degradation due to routing loops.

Config 5 - OMM Only: Vehicles maintain persistent mem-
ory of all broadcasted obstacles in set Oi(t). When initially
planning routes or upon receiving new obstacle information,
they recalculate paths excluding known obstacles. The 8-
second reactive reroute trigger is disabled—all rerouting is
proactive based on communicated information. This isolates
the benefit of memory.

Config 6 - Reroute + OMM (Full Coordination): Com-
bines the 8-second reactive reroute trigger with OMM. This
represents the most sophisticated coordination: vehicles proac-
tively avoid known obstacles in all route calculations and
can also reactively reroute if unexpectedly blocked. This is
hypothesized to achieve optimal performance.

D. Algorithmic Details

1) Baseline Routing: Dijkstra’s Algorithm: All vehicles
use Dijkstra’s shortest path algorithm for route planning
[13]. Dijkstra’s is optimal for graphs with non-negative edge
weights and has time complexity O((|V |+ |E|) log |V |) when
implemented with a binary heap, making it efficient for our
86-node network.

2) Modified Dijkstra’s with Obstacle Exclusion: For OMM-
enabled configurations, we modify Dijkstra’s to exclude
known obstacle nodes. Algorithm 1 presents this modification.

The key modification is at lines 9-11 and 13-15: nodes in the
obstacle set O are skipped during graph traversal. This ensures
computed paths do not route through known blockages.

3) Object Memory Management (OMM) Protocol: OMM
consists of three components: obstacle detection and broad-



Config 1
No Obstacles
⋆ Optimal

Config 2
Obstacles

✗ Comm ✗ Reroute ✗ OMM
Worst Case

Config 3
Communication Only

✓ Comm ✗ Reroute ✗ OMM
≈ Minimal Gain

Config 4
Reroute w/o OMM

✓ Comm ✓ Reroute ✗ OMM
△ FAILURE

(542% degradation!)

Config 5
OMM Only

✓ Comm ✗ Reroute ✓ OMM
✓ Good

Config 6
Full Coordination

✓ Comm ✓ Reroute ✓ OMM
⋆ Best

(75.7% improvement!)

Add Obstacles

Enable Comm
Enable Comm
+ Reroute

Add OMM
Add OMM

Add Reroute

Legend: Comm = Communication — OMM = Object Memory Management — ✓ = Enabled — ✗ = Disabled

Fig. 3: Visual representation of the six experimental configurations showing the systematic progression from uncoordinated
(Config 2) to fully coordinated (Config 6) multi-agent systems. Configuration 4 represents the critical failure case where
reactive rerouting without persistent memory creates pathological routing loops, resulting in 542% performance degradation.
Configuration 6 achieves optimal performance through the combination of communication, adaptive rerouting, and Object
Memory Management.

casting, obstacle set maintenance, and memory-aware path
planning. Algorithm 2 specifies the full protocol.

Key aspects of OMM:
Decentralized Operation: Each vehicle independently

maintains its obstacle set Oi(t). There is no central coordi-
nator.

Persistent Memory: Once an obstacle is added to Oi(t),
it remains indefinitely during that vehicle’s journey. (In ex-
tensions, memory decay could be implemented for temporary
obstacles.)

Minimal Communication: Only the obstacle node ID is
broadcast, not entire routes or state information, keeping
message sizes small.

Proactive Recalculation: When receiving obstacle informa-
tion, if the current planned route ri(t) includes the obstacle
node, an immediate recalculation is triggered (lines 12-14),
allowing proactive avoidance before reaching the blockage.

Integration with Reactive Triggers: OMM is compatible
with reactive reroute triggers (lines 21-23). The difference

from Config 4 is that the recalculated route uses Oi(t),
preventing loops back to known obstacles.

E. Performance Metrics

For each experimental condition, we measure:

• Average Travel Time (τ̄ ): Mean total time for all vehi-
cles to reach destinations. Vehicles failing to arrive within
300 seconds are counted at 300s.

• Average Wait Time (w̄): Mean cumulative time vehicles
spent stationary at obstacle nodes.

• Average Recalculations per Vehicle (n̄recalc): Mean
number of times each vehicle invoked Dijkstra’s al-
gorithm after initial planning. Higher values indicate
more computational overhead and potentially unstable
decision-making.

• Success Rate: Percentage of vehicles reaching their des-
tination within the 300-second simulation time limit.



Algorithm 2 Object Memory Management (OMM) Protocol

1: // Initialization (per vehicle i)
2: Oi ← ∅ {Known obstacles set}
3: Obroadcast ← ∅ {Global broadcast tracker}
4:
5: // 1. Obstacle Detection and Broadcasting
6: if vehicle i at node v encounters obstacle at time t then
7: Oi ← Oi ∪ {v} {Add to local memory}
8: if v /∈ Obroadcast then
9: Broadcast message: ⟨i, v, t⟩ to all vehicles

10: Obroadcast ← Obroadcast ∪ {v}
11: end if
12: Record waiting start time tiwait ← t
13: end if
14:
15: // 2. Message Reception and Memory Update
16: When vehicle i receives ⟨j, v, t′⟩ from vehicle j:
17: Oi ← Oi ∪ {v} {Update local memory}
18: if v ∈ current planned route of i then
19: Trigger immediate path recalculation
20: end if
21:
22: // 3. Proactive Path Planning with OMM
23: When path recalculation needed:
24: Pi ← ModifiedDijkstra(G, pi, di, Oi)
25: Update vehicle route to Pi

26:
27: // 4. Reactive Reroute Trigger (8-second threshold)
28: if vehicle i waiting at obstacle node for (t − tiwait) ≥ 8

seconds then
29: if obstacle not cleared then
30: pprev ← previous node in route
31: Backtrack to pprev
32: Pi ← ModifiedDijkstra(G, pprev, di, Oi)
33: Resume travel on new path Pi

34: end if
35: end if
36:
37: // 5. Natural Obstacle Clearance
38: if vehicle i waiting at obstacle for (t−tiwait) ≥ 10 seconds

then
39: Resume original route {Obstacle cleared}
40: tiwait ← NULL
41: end if

F. Implementation Details

The simulation was implemented in Python 3.10 using:
• NetworkX for graph data structures and baseline Dijk-

stra’s implementation
• PyGame for real-time visualization and debugging
• Custom event system for V2V message broadcasting and

reception
• GraphML for road network specification and persistence
The complete simulation codebase consists of approxi-

mately 2,500 lines of Python, with modular components for
vehicle agents, communication protocols, obstacle manage-
ment, and data logging. Simulation runs were executed on
a standard laptop (Intel Core i7, 16GB RAM), with each 300-
second scenario completing in 2-5 minutes of real time. This
efficiency enabled the collection of comprehensive data across
all 72 experimental conditions.

IV. RESULTS

This section presents comprehensive experimental findings,
organized to clearly demonstrate the routing loop problem,
OMM’s effectiveness, and scalability analysis.

A. Overview: The Catastrophic Failure of Memory-Less
Rerouting

Table II summarizes average performance across all 12
scenario types (combinations of vehicle density and obstacle
frequency), aggregating over both movement patterns.

TABLE II: Summary of Average Performance Across All 12
Scenario Types (72 Total Configurations)

Configuration Avg. Travel Avg. Wait Avg. Recalc.
Time (s) Time (s) per Vehicle

1. No Obstacle 19.35 0.00 0.00
2. Obstacle, No Reroute 36.16 16.59 0.00
3. Communication Only 36.79 14.56 3.08
5. OMM Only 32.19 9.43 1.58
4. Reroute w/o OMM 104.99 64.91 9.83
6. Reroute + OMM 32.55 7.81 1.67
Comparative Metrics:
Config 4 vs. Config 2 +190.3% +291.3% -
Config 6 vs. Config 2 -10.0% -52.9% -
Config 6 vs. Config 4 -69.0% -88.0% -83.0%

Key Findings from Summary Data:
• Baseline Performance (Config 1): Average travel time

of 19.35s represents optimal flow without disruptions.
• Uncoordinated Obstacle Response (Config 2): Introduc-

ing obstacles without rerouting nearly doubles travel time
to 36.16s, with vehicles spending 16.59s (46% of total
time) waiting at blockages.

• Information Alone is Insufficient (Config 3): Enabling
communication without adaptive rerouting provides min-
imal benefit (36.79s travel time), only slightly reducing
wait time to 14.56s. Vehicles receive advance warning
but cannot act on it effectively.

• Catastrophic Failure of Memory-Less Rerouting (Con-
fig 4, highlighted): Enabling reactive rerouting with-
out OMM increases travel time to 104.99s—a 190%
increase over the uncoordinated baseline and 442%
above optimal. Wait times quadruple to 64.91s, and vehi-
cles recalculate routes an average of 9.83 times, indicating
severe decision instability. This configuration, intended
to improve efficiency, produces the worst performance of
any tested condition.

• OMM Alone is Highly Effective (Config 5): Enabling
OMM without reactive triggers reduces travel time to
32.19s (11% below uncoordinated baseline) and wait time



to 9.43s (43% reduction). Route recalculations drop to
1.58 per vehicle, indicating stable, informed decision-
making.

• Full Coordination Achieves Near-Optimal Perfor-
mance (Config 6, highlighted): Combining reactive
rerouting with OMM yields the best results: 32.55s
travel time (68% above optimal, 10% below unco-
ordinated) and 7.81s wait time (53% reduction from
uncoordinated). Most strikingly, Config 6 achieves a
69% reduction in travel time and 88% reduction in
wait time compared to memory-less rerouting (Config
4), while requiring 83% fewer route recalculations. This
demonstrates that OMM transforms a catastrophically
failing system into a near-optimal one.

B. The Routing Loop Phenomenon: Visual Documentation

Figure 4 provides a step-by-step visualization of the routing
loop problem that causes Config 4’s catastrophic failure.

Analysis of the Routing Loop:
The routing loop arises from the interaction of three factors:
1) Multiple obstacles in the environment
2) Greedy local optimization: At each reroute, the vehicle

computes the shortest path from its current position to
the destination, without considering past failures

3) Lack of memory: The vehicle has no mechanism to
exclude previously encountered obstacles from consid-
eration

Mathematically, consider a vehicle at position p having en-
countered obstacles at nodes Opast = {o1, o2, ..., ok}. Without
OMM, each reroute computes:

rnew = argminr∈paths(p,d)

∑
e∈r

w(e)

where paths(p, d) includes paths through nodes in Opast. With
OMM, the optimization instead becomes:

rnew = argminr∈paths(p,d)\Opast

∑
e∈r

w(e)

excluding paths through known obstacles. This simple modi-
fication prevents loops while maintaining optimality over the
feasible (non-blocked) path space.

In our experiments, we observed vehicles in Config 4
scenarios becoming trapped in loops for 30-60 seconds before
eventually finding alternate routes or timing out. In some
extreme cases (high obstacle density), vehicles never escaped
loops within the 300-second time limit, registering as failures.

C. Detailed Scenario Results

Table III presents granular results for representative scenar-
ios across the vehicle density spectrum, isolating the structured
left-to-right movement pattern for clarity.

Observations:
Scaling with Vehicle Density: The routing loop problem

becomes more severe as vehicle density increases. For 15 cars
with 6 obstacles, Config 4’s travel time (51.6s) is elevated
but manageable. However, for 55 cars with 6 obstacles, it

explodes to 98.5s, and with 20 obstacles, reaches 186.0s—over
8× the baseline. This occurs because higher density leads to
more V2V messages about obstacles, triggering more reroute
attempts, which exacerbates looping behavior.

OMM Effectiveness Across Densities: Config 6 (OMM-
enabled) maintains consistently near-optimal performance re-
gardless of density. For 55 cars with 20 obstacles—the most
challenging scenario—Config 6 achieves 45.2s travel time,
only 90% above optimal baseline (23.8s), compared to Config
4’s 682% increase. Wait time reduction is even more dramatic:
13.7s for Config 6 vs. 118.9s for Config 4, an 88.5% improve-
ment.

Computational Stability: Route recalculations per vehicle
remain low (1-3) for OMM-enabled configs across all sce-
narios, indicating stable decision-making. In contrast, Con-
fig 4 requires 4-18 recalculations per vehicle, growing with
scenario complexity. This computational overhead, combined
with wasted travel from loops, explains the severe performance
degradation.

D. Boxplot Analysis: Performance Distributions

Figures 5 through 6 present boxplot visualizations showing
the distribution of individual vehicle travel times for selected
scenarios. These reveal not just average performance but also
variability and outliers.

Key Insights from Distributions:
Config 4 Produces Extreme Outliers: The boxplots reveal

that Config 4’s poor average performance is driven by a subset
of vehicles experiencing catastrophic routing loops. In the
55-car, 20-obstacle scenario, approximately 30% of vehicles
in Config 4 exceed 150s travel time, with some failing to
complete within 300s. This bimodal behavior (some vehicles
succeeding quickly, others becoming trapped) is characteristic
of pathological feedback loops.

OMM Reduces Variability: Config 6 not only achieves
better average performance but also lower variance. The
interquartile range (IQR) is consistently smaller, indicating
more predictable outcomes. This is critical for real-world
deployment, where worst-case behavior matters as much as
average-case.

Communication Alone Shows Modest Benefit: Config 3
(Communication Only) distributions are slightly better than
Config 2 (no coordination), but still show significant variance
and elevated medians. This confirms that passive information
sharing without adaptive action provides limited value.

E. Scalability Analysis

Figures 7 and 8 present line graphs showing how average
travel time scales with vehicle density for 6-obstacle and 20-
obstacle scenarios, respectively.

Scalability Findings:
OMM Enables Sublinear Scaling: In the 6-obstacle case,

Config 6’s travel time grows from 28.1s (15 vehicles) to
24.7s (55 vehicles)—slightly decreasing due to randomization
effects in route selection with more agents. Even in the
challenging 20-obstacle scenario, growth is modest (40.5s



Fig. 4: Sequential visualization of the routing loop phenomenon in Config 4 (Reroute without OMM). The sequence shows
Vehicle 8 (orange) and Vehicle 6 (purple) on a graph where obstacles appear as red nodes. (Top-left) Initial state: both
vehicles traveling toward their destinations. (Top-center) Vehicle 8 encounters obstacle at node 40, broadcasts information,
and reroutes after 8s. (Top-right) Vehicle 8’s new route encounters obstacle at node 37, and it reroutes again. (Bottom-right)
Without memory of obstacle 40, the rerouting algorithm selects a path leading back toward it. (Bottom-center) Vehicle 8
returns to the vicinity of obstacle 40, ”forgetting” it was blocked. (Bottom-left) The cycle repeats, with the vehicle trapped in
an inefficient loop between the two obstacles. This visualization demonstrates why memory-less reactive rerouting degrades
performance: locally optimal decisions at each step produce globally pathological behavior.

TABLE III: Detailed Performance Metrics for Structured Left-to-Right Movement Scenarios

Configuration 15 Cars, 6 Obs 35 Cars, 6 Obs 55 Cars, 6 Obs 55 Cars, 20 Obs
Travel Wait Recalc Travel Wait Recalc Travel Wait Recalc Travel Wait Recalc

(s) (s) (s) (s) (s) (s) (s) (s)
1. No Obstacle 23.1 0.0 0.0 21.9 0.0 0.0 23.3 0.0 0.0 23.8 0.0 0.0
2. Obstacle, No Reroute 39.1 16.0 0.0 34.2 12.3 0.0 35.5 12.4 0.0 55.4 31.7 0.0
3. Communication Only 35.0 9.4 2.0 26.8 3.7 2.0 29.5 5.1 2.0 53.9 25.7 6.0
5. OMM Only 27.6 3.3 1.0 24.5 1.4 1.0 24.6 0.7 1.0 45.1 17.3 3.0
4. Reroute w/o OMM 51.6 13.9 4.0 43.4 14.7 4.0 98.5 56.3 9.0 186.0 118.9 18.0
6. Reroute + OMM 28.1 2.7 2.0 25.0 1.2 1.0 24.7 0.6 1.0 45.2 13.7 3.0
Improvement of Config 6 vs Config 4:
Reduction (%) -45.5 -80.6 -50.0 -42.4 -91.8 -75.0 -74.9 -98.9 -88.9 -75.7 -88.5 -83.3

to 45.2s), demonstrating near-constant-time performance as
vehicle count increases.

Memory-Less Rerouting Fails to Scale: Config 4 shows
super-linear growth, particularly pronounced in high-obstacle
scenarios. The slope increases beyond 35 vehicles, suggesting
that the system approaches a ”tipping point” where rout-
ing loops create cascading failures. This makes memory-less
rerouting fundamentally unsuitable for large-scale deployment.

Bottleneck Analysis: In the 20-obstacle scenarios, even
Config 6’s performance degrades somewhat at high density
(though far less than Config 4). Analysis of individual vehicle
logs reveals this is due to network topology constraints: with
20

F. Impact of Movement Patterns

Comparing structured (left-to-right) vs. random movement
patterns reveals interesting dynamics:

Random Patterns Amplify Routing Loop Effects: In
random scenarios, Config 4’s performance is even worse than
structured cases (e.g., 207.1s for 15 cars, 20 obstacles, random
movement vs. 158.2s for structured). This occurs because
random movement creates more diverse obstacle encounter
sequences, increasing the probability of loop-inducing obstacle
pairs along individual paths.

OMM Remains Effective Across Patterns: Config 6
maintains strong performance for both structured and random
movement (e.g., 51.1s vs. 40.5s for 15 cars, 20 obstacles), with
only modest degradation in the random case. This indicates
OMM’s robustness to different traffic patterns.

G. Supplementary Data: Complete Performance Matrix

Table A in the Appendix presents the full dataset spanning
all 72 experimental configurations, providing comprehensive
evidence of the consistency of our findings.



Fig. 5: Travel time distributions for 15 vehicles with 6 obsta-
cles (left-to-right pattern). Note the extreme outliers in Config
4 (Reroute w/o OMM), where several vehicles exceed 100s
due to routing loops. Config 6 (Reroute + OMM) shows tight
distribution around 25-30s, indicating consistent performance.

V. DISCUSSION

A. Theoretical Implications: Memory as a Fundamental Re-
quirement

Our results demonstrate that persistent shared memory is
not merely an enhancement but a fundamental require-
ment for robust decentralized multi-agent coordination in
dynamic environments. This finding has implications extend-
ing beyond autonomous vehicles to any distributed system
facing similar challenges.

Why Memory-Less Rerouting Fails: The routing loop
problem arises from a fundamental tension in greedy opti-
mization. At each decision point, a memory-less agent com-
putes the locally optimal action based on its current state
and environment. However, in a dynamic multi-agent setting
with multiple obstacles, the environment state depends on
the agent’s past actions and other agents’ behaviors. Without
memory, the agent treats each decision as independent, failing
to recognize that it has already explored and rejected certain
paths. This creates the potential for cyclic behavior where the
same suboptimal decisions repeat.

Formally, consider an agent’s state space S including posi-
tion and knowledge. A memory-less policy π : S → A maps
states to actions. If obstacle configuration creates a cycle in the
state transition graph where π(s1)→ s2 → ...→ sk → s1, the
agent becomes trapped. OMM breaks this cycle by expanding
the state representation to S′ = S × 2V (where 2V is the
power set of nodes, representing all possible obstacle memory
sets), ensuring states in the cycle are distinguished by different
memory content, allowing π′ to make different decisions.

Fig. 6: Travel time distributions for 55 vehicles with 20
obstacles. Config 4’s distribution is extremely wide, with
median around 120s and upper whisker extending beyond 250s
(some vehicles timed out at 300s). Config 6 maintains median
around 42s with far less variability, demonstrating robustness
under high load.
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Fig. 7: Average travel time vs. vehicle count for 6-obstacle
scenarios (left-to-right pattern). Config 6 (Self-Mem) scales
gracefully across all densities, maintaining travel times within
25-30s. Config 4 (Self without OMM) degrades sharply at 55
vehicles (98.48s), indicating catastrophic failure of memory-
less rerouting under increased load.

Connection to Reinforcement Learning: This finding
aligns with known challenges in MARL. Dinneweth et al. note
that non-stationarity (where an agent’s environment changes
due to other agents’ actions) is a central difficulty in multi-
agent learning [4]. Our work shows that even in a coordi-
nation scenario (where agents ostensibly share goals), non-
stationarity combined with lack of memory creates patholog-
ical outcomes. Recurrent neural networks (RNNs) or LSTMs
in MARL serve a similar function to OMM—providing agents
with implicit memory of past observations to inform current
decisions.
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Fig. 8: Average travel time vs. vehicle count for 20-obstacle
scenarios. Config 4 (Self without OMM) exhibits exponential-
like growth, reaching 158-186s across all densities. Config 6
(Self-Mem) maintains near-linear scaling, achieving 40-45s at
all vehicle counts, demonstrating that OMM enables robust
coordination even under extreme obstacle density (23% of
network nodes blocked).

Broader Applicability: The routing loop problem and
OMM solution generalize to:

• Multi-robot path planning: Robots exploring environ-
ments with discovered obstacles

• Network routing: Packet routing in networks with
node/link failures

• Supply chain optimization: Delivery networks adapting
to disrupted routes

• Swarm robotics: Collective navigation around hazards
In all cases, the principle holds: reactive optimization

without memory of past failures leads to repetitive mistakes;
persistent shared memory enables learning from collective
experience.

B. Practical Considerations for Deployment

1) Communication Overhead: OMM requires vehicles to
broadcast obstacle messages. In our simulation, each obstacle
detection generates one message containing ⟨agent ID, node
ID, timestamp⟩—roughly 12-16 bytes. For a scenario with
55 vehicles and 20 obstacles, assuming each obstacle is
encountered by 2-3 vehicles on average, this yields ∼40-
60 messages over a 60-second period, or < 1 message per
second network-wide. Modern V2V protocols (DSRC, C-
V2X) support hundreds of messages per second [6], making
OMM’s communication overhead negligible.

2) Memory Storage Requirements: Each vehicle stores
|Oi(t)| ≤ |V | node IDs. With 86 nodes represented as 2-byte
integers, maximum memory per vehicle is 172 bytes—trivial
for modern embedded systems. Even scaling to city-sized net-
works (10,000+ nodes), memory requirements remain under
20 KB per vehicle, well within constraints of automotive-grade
hardware.

3) Handling Temporary Obstacles: Our current OMM im-
plementation stores obstacles indefinitely. For real-world de-
ployment with temporary obstacles (e.g., stalled vehicles that

are towed away), a memory decay mechanism is needed.
Potential approaches:

• Timestamp-based expiry: Remove obstacles from Oi(t)
if not re-observed within time window ∆t

• Confirmation-based persistence: Obstacles remain only
if periodically re-broadcast by encountering vehicles

• Probabilistic softening: Reduce but don’t eliminate the
cost of routing through old obstacles, allowing reconsid-
eration over time

These extensions would allow OMM to distinguish persis-
tent blockages (requiring indefinite avoidance) from temporary
delays (permitting eventual re-exploration).

4) Security and Trust: A critical concern for real-world
OMM deployment is security against malicious agents. A
bad actor could broadcast false obstacle information, causing
vehicles to avoid perfectly viable routes and inducing artificial
congestion. Mitigations include:

• Cryptographic authentication: V2V messages digitally
signed with vehicle credentials, enabling verification of
sender identity

• Plausibility checks: Cross-reference obstacle reports
with onboard sensor data; reject reports inconsistent with
direct observations

• Consensus-based validation: Require multiple indepen-
dent agents to report an obstacle before adding to Oi(t)

• Reputation systems: Track message reliability over time;
downweight information from agents with history of
inaccurate reports

Existing V2X security protocols [8] provide foundation
for these mechanisms, though integration with OMM-specific
logic requires further research.

C. Limitations and Future Work

1) Graph Abstraction: Our graph-based simulation ab-
stracts away vehicle dynamics, acceleration, lane-changing,
and intersection protocols. While this enables clear isolation
of routing decision effects, it limits direct applicability to real-
world scenarios. Future work should validate OMM in high-
fidelity simulators (CARLA, SUMO) incorporating detailed
vehicle physics and sensor uncertainty. We expect the core
benefit—preventing routing loops—to persist, though absolute
performance numbers will differ.

2) Obstacle Model: We model obstacles as complete node
blockages persisting for fixed durations. Real-world obsta-
cles (accidents, construction, congestion) vary in severity
(partial vs. complete blockage), persistence (temporary vs.
long-term), and predictability (scheduled construction vs.
sudden incidents). Extending OMM to handle probabilis-
tic obstacle models and partial blockages would enhance
realism. For instance, obstacles could be represented as
(node, severity, confidence) tuples, with routing costs ad-
justed proportionally rather than binary inclusion/exclusion.

3) Heterogeneous Agent Capabilities: Our experiments as-
sume all vehicles are OMM-capable and communicating. In
transitional deployment phases, fleets will be mixed: some



vehicles with full OMM, others with partial or no coordination
capabilities. Investigating performance degradation as OMM
adoption rate varies (e.g., 25

4) Scalability to Large Networks: Our 86-node graph, while
sufficient for observing routing loops and OMM effectiveness,
is small compared to real metropolitan road networks (thou-
sands to tens of thousands of nodes). Future work should
evaluate OMM’s scalability to city-sized networks, potentially
incorporating hierarchical routing (planning at multiple reso-
lution levels) to manage computational complexity.

5) Integration with Learning-Based Approaches: Our
OMM protocol is rule-based, with hand-crafted logic for
obstacle memory and path planning. An exciting direction
is integrating OMM with MARL. Agents could learn when
to trust obstacle information, how long to retain memory,
and how to balance exploration (attempting recently-blocked
routes to check if cleared) with exploitation (avoiding known
obstacles). Preliminary experiments suggest that providing
MARL agents with OMM-like memory structures significantly
accelerates learning and improves final policy performance,
but comprehensive study is future work.

VI. CONCLUSION

This research makes three principal contributions to the
understanding of multi-agent coordination for autonomous
vehicles:

First, we identify and characterize the routing loop prob-
lem—a pathological failure mode where memory-less reactive
rerouting causes vehicles to become trapped in cycles of
inefficient path recalculation. Our comprehensive experiments
demonstrate that this failure is not an edge case but a sys-
tematic phenomenon, causing 190-682% performance degra-
dation across diverse scenarios. This finding challenges the
assumption that more information and more adaptive decision-
making necessarily improve multi-agent system performance,
highlighting that naive implementations can produce worse
outcomes than simpler non-adaptive approaches.

Second, we introduce Object Memory Management
(OMM)—an elegant, lightweight mechanism for preventing
routing loops through persistent shared memory of encoun-
tered obstacles. OMM’s simplicity (requiring only 12-16 bytes
per obstacle message and ¡200 bytes memory per vehicle)
belies its effectiveness: it achieves 70-90% reductions in de-
lay compared to memory-less systems, bringing performance
within 68% of obstacle-free optimal conditions. By trans-
forming vehicles from reactive agents into proactive, learning
agents that leverage collective experience, OMM represents a
fundamental advancement in decentralized coordination capa-
bility.

Third, through 72 systematically designed experimental
configurations spanning diverse vehicle densities, obstacle
frequencies, and movement patterns, we provide rigorous
empirical evidence that persistent shared memory is not merely
beneficial but essential for robust multi-agent coordination in
dynamic environments. This finding has implications extending

beyond autonomous vehicles to general multi-agent AI sys-
tems, informing the design of any decentralized coordination
mechanism operating under uncertainty.

The transition from individual autonomy to collective intel-
ligence in AV systems requires more than sophisticated sen-
sors and communication protocols—it demands careful algo-
rithm design that accounts for the challenges of decentralized
decision-making in non-stationary environments. Our work
demonstrates that simple, theoretically-grounded mechanisms
like OMM can unlock the full potential of vehicle cooper-
ation, paving the way for resilient, efficient next-generation
transportation networks.

As autonomous vehicle technology approaches widespread
deployment, insights from this research will inform the prac-
tical design of V2V coordination protocols, ensuring that
the promise of cooperative driving is realized without the
pitfalls of naive implementations. Future research integrating
OMM with learning-based approaches, validating performance
in high-fidelity simulators, and extending to mixed human-
AV traffic will further bridge the gap between theoretical
multi-agent coordination and real-world autonomous mobility
systems.
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APPENDIX

Table I: Complete Performance Dataset: All 72 Experi-
mental Configurations

Cars Obs Pattern No Obs Obs Comm OMM Self Self+OMM
T W R T W R T W R T W R T W R T W R

15 6 LR 23.1 0.0 0 39.1 16.0 0 35.0 9.4 2 27.6 3.3 1 51.6 13.9 4 28.1 2.7 2
15 6 Rand 14.8 0.0 0 21.5 6.7 0 20.6 4.0 1 19.1 2.7 1 75.5 39.6 6 21.0 2.1 1
15 20 LR 23.5 0.0 0 53.4 30.0 0 57.0 28.7 3 39.8 14.7 2 158.2 96.3 14 40.5 10.7 2
15 20 Rand 17.5 0.0 0 43.5 26.1 0 51.2 29.4 4 50.5 21.4 4 207.1 139.0 20 51.1 18.7 3
35 6 LR 21.9 0.0 0 34.2 12.3 0 26.8 3.7 2 24.5 1.4 1 43.4 14.7 4 25.0 1.2 1
35 6 Rand 16.0 0.0 0 26.3 10.3 0 20.2 3.4 1 18.6 1.4 1 67.0 36.2 6 19.2 1.1 1
35 20 LR 22.2 0.0 0 43.0 20.9 0 46.3 21.5 5 40.5 15.8 2 173.4 109.8 16 40.5 12.4 2
35 20 Rand 18.8 0.0 0 35.9 17.2 0 39.3 18.3 3 31.1 10.0 1 103.5 58.2 9 29.9 7.1 1
55 6 LR 23.3 0.0 0 35.5 12.4 0 29.5 5.1 2 24.6 0.7 1 98.5 56.3 9 24.7 0.6 1
55 6 Rand 14.4 0.0 0 23.4 9.1 0 18.9 3.8 1 17.0 1.1 1 74.8 40.7 6 17.9 0.9 1
55 20 LR 23.8 0.0 0 55.4 31.7 0 53.9 25.7 6 45.1 17.3 3 186.0 118.9 18 45.2 13.7 3
55 20 Rand 17.1 0.0 0 38.9 21.7 0 38.1 17.1 5 35.6 13.5 2 148.3 93.1 15 35.8 10.8 2

Legend: T = Travel Time (s), W = Wait Time (s), R =
Recalculations. LR = Left-to-Right, Rand = Random.


